

The Restoration Debate

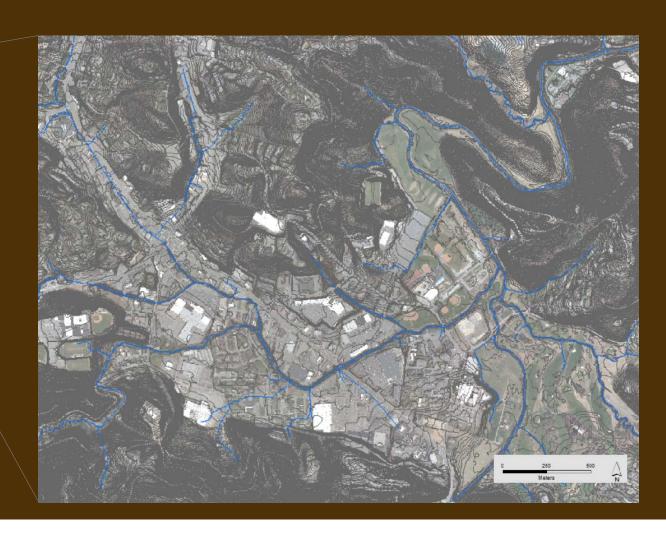
- Lack or underuse of ecological indicators
- Lack of communication between researchers and practitioners
- Underwhelming results
- Rosgen / Natural Channel Design
 - Preferred method for agencies
 - Criticized for oversimplifying fluvial systems

Research Questions

- 1. What are the goals for restoration?
- 2. Does available data suggest the need for restoration?
- 3. How likely are management goals to be met based on available data?

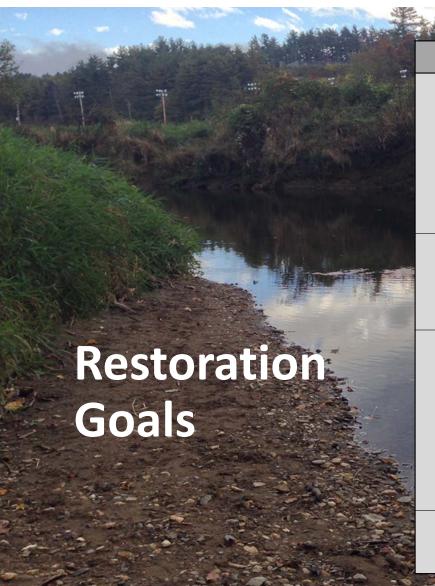
The South Fork New River Restoration

- Section 206 of the Water Resource Development Act for projects
 - to improve environment
 - in the public interest
 - cost-effective
- 1998 Town of Boone, NC requested project
- 2013 actual implementation; Fall 2014 construction
- Partners: New River Conservancy, ASU
- Total budget = \$2.6 million


The New River

- One of the oldest rivers in the world
- American Heritage River

Boone, NC


- ~17,000 full time residents +~17,000 students
- 20% growth rate 2000-2010 = development /impervious surfaces

The South Fork New River

Methods

- In-depth interviews with project sponsors
 - US Army Corps of Engineers
 - Town of Boone project manager
 - New River Conservancy
 - Appalachian State University physical plant
- Reviewed project plan and construction documents
- Reviewed available pre-restoration data

Sponsor	Objectives	Expected Outcomes		
	Improve aquatic habitat	Improved habitat		
	Prevent loss of greenway	Protected greenway		
USACE	Reduce sedimentation	Reduced bank loss		
	Create access for recreation	Reduced meander		
	Buffer stormwater impact	Provide recreation		
	Improve aquatic habitat	Improved habitat		
Boone	Prevent loss of greenway	Protected greenway		
	Stabilize streambank	Reduced turbidity		
	Improve aquatic habitat	Improved habitat		
New River Conservancy	Prevent loss of greenway	Reduced erosion/sediment		
	Stabilize streambank	Economic potential		
	Create access for recreation	Public education		
	Reconnect floodplain			
ASU	Improve athletic fields	Raise fields 6 inches, reduce standing water, level fields		

Restoration Plan

- Bendway weirs and boulders to control flow direction
- Rehabilitate wetland areas
- Bank sloping and vegetation
- Riparian buffer extension
- Invasive species control and re-vegetation
- Bottomland hardwood forest re-vegetation

Benthic Macroinvertebrate BI Ratings

North Carolina Biological Index Ratings for Macro Invertebrate Communities in the Upper South Fork Watershed

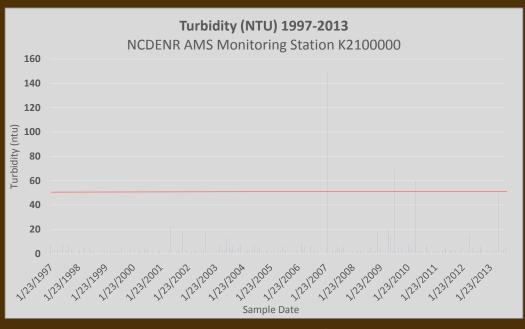
Data Analyzed by the Biological Assessment Branch at NCDENR (1993-2008)

Stream	Site ID	Sample Type	July- 1993	Aug- 1998	Aug- 2003	Nov- 2003	Aug- 2008
South Fork New River	KB16	SQM	Fair	Good- Fair	Good- Fair	Fair	Fair
Middle Fork South Fork New River	KB1	EPT	Excellent	Good	Good- Fair	Good	Good- Fair
East Fork South Fork New River	KB12	EPT	Excellent	Good	Good	Fair	Good

NCDENR benthic data = declining BI ratings

Sampling sites not in restoration reach

2013 AppAqua data at restoration site = **Excellent BI rating**


Water Quality from EA & NCDENR

Water Quality Data from NCDENR Monitoring Station KB16 (1998-2003)								
Parameter	N	Evaluation Level	Minimum	Median	Maximum			
Specific Conductance (µS/cm)	44	n/a	20	134	266			
pН	45	<6,>9	5.9	7	7.6			
Turbidity (ntu)	53	>50 (Trout Designated)	1	2	22			

EA drafted in 2009; data through 2003

EA did not include temperature AppAqua temp data within reach averages 7° C

> Water quality = very good low turbidity except runoff events low temp

> 50 ntu evaluation level for trout designated water

Restoration needed?

- EA & ASU fish survey = **Good** biologic integrity
 - herbivores = excessive solar input
- EA benthic data = declining ratings; sampling sites outside project area
- AppAqua benthic data = Excellent biologic integrity at project area
- NCDENR turbidity data = low, within NC standard for trout waters

Data = good water quality; room for improvement in fish diversity

How likely are management goals to be met?

Improve Habitat

- Habitat in good shape
- Disrupts good habitat
- Added vegetation= canopy coverand habitat

Protect Greenway

- Stabilized banks reduces land loss
- Upstream conditions = overwhelms restoration area
- River systems migrate naturally

Stabilize banks

- In stream
 structures may
 fail/require
 maintenance
- Upstream
 conditions =
 overwhelms
 restoration area

Reduce Turbidity

- No turbidity data at restoration site
- Turbidity = very low
- Turbidity = function of entire watershed

Conclusions

- Data used in decision = poor (geographically and temporally)
- Upstream watershed conditions may overwhelm in-stream structures
- Upstream watershed conditions may continue bank degradation
- Restoration may lower quality in short term
- Restoration justification = improved aquatic habitat
- Primary issue = land loss via erosion
 - Grading banks + re-vegetation = cheaper approach; same outcome