Photovoltaics and Electrical Storage

Jeffrey S. Tiller, PE and Brian Raichle, Ph.D. Appalachian State University

tillerjs@appstate.edu

For presentation at the Green Energy Conference October 17, 2014

Estimated Global Installed Capacity of Energy Storage (from Energy Storage Associates presentation)

Source: StrateGen Consulting, LLC research; thermal storage installed and announced capacity estimated by Ice Energy and Calmac. Note: Estimates include thermal energy storage for cooling only. Figures current as of April, 2010.

Comparison of Storage Technologies (Electrical Storage Association)								
Storage Technology	Main Advantages	Disadvantages	Power Application	Energy Application				
Flow batteries	High capacity, independed power and energy ratings	Low energy density	Reasonable for this application	Fully capable and reasonable				
Sodium-sulfur batteries	High power and energy densities, high efficiency	Production cost high, safety concerns	Fully capable and reasonable	Fully capable and reasonable				
Li-ion batteries	High power and energy densities, high efficiency	High production cost, requires special charging circuit	Fully capable and reasonable	Feasible, but not quite practical or economical				
Other advanced batteries	High power and energy densities, high efficiency	High production cost	Fully capable and reasonable	Feasible, but not quite practical or economical				
Lead acid batteries	Low capital cost	Limited life cycle when deeply charged	Fully capable and reasonable	Feasible, but not quite practical or economical				
Flywheels	High power	Low energy density	Fully capable and reasonable	Feasible, but not quite practical or economical				
Pumped hydro	High capacity, low cost	Special site requirements	Not feasible or economical	Fully capable and reasonable				
Compressed air	High capacity, low cost	Special site requirements,	Not feasible or	Fully capable and reasonable				

needs gas fuel

economical

energy storage

Reasons for electrical storage

Generation profile # Load profileIn such a case, some load shifting is required

AES Energy Storage

- AES has exceeded 100 Megawatts of installed electrical storage
- Dayton Power and Light 40 MW plant (to the left)
- Most of their projects used sealed battery systems

Reasons for electrical storage

2. Peak shaving is needed to reduce cost of generation In such a case, some load shifting is required

Example of Peak Shaving with Solar PV

- □ Solar Decathlon Europe Project
- □ Appalachian State/ University of Angers (Fr) Project
- □ Taiwan's Orchid House
- □ Sample rules
 - Max of 6 kW Photovoltaics
 - ❖ Only receive points if PV production > Electricity consumption
 - ❖ Credit for not using grid electricity between 17:00 and 22:00
 - ❖ Battery storage limited to 5 kWh

ASU/ Angers Solar Decathlon House Under Construction in Boone, NC

House Disassembled

The Taiwan Team Performed Well – 4 trophies!

Solar Decathlon Europe 2014: Key Rules for PV Systems

- ☐ Maximum of 5 kW peak
- □ Commercially available system
- □ Batteries limited to 6 kWh of storage
- ☐ Battery bank inverter < 5 kW

Solar Decathlon Europe 2014 – Points for the following:

- □ PV Production > Electricity Consumption
- □ Minimize electricity purchased from the electricity grid from 17:00 to 22:00
- ☐ Minimize the power demand (in kW) relative to the power supplied (in kW) by the PV system
- □ Maintain temperature and relative humidity in the house throughout the monitoring period

ASU Solar Decathlon House Performance with Integrated Storage

Day	Building Load	PV Production	Grid Power	Power Sent to	Battery Draws
	(kWh)	(kWh)	Used (kWh)	Grid (kWh)	(kWh)
30-Jun	18.0	23.9	5.7	13.3	4.1
1-Jul	15.5	20.1	4.6	6.8	4.0
2-Jul	10.2	35.4	0.2	23.0	2.6
3-Jul	12.8	33.3	0.4	21.3	4.2
4-Jul	5.4	15.0	1.8	6.8	0.6
5-Jul	2.7	13.4	0.7	11.1	1.1
6-Jul	2.5	10.1	0.2	6.7	1.3
7-Jul	7.9	20.6	0.2	12.3	4.0
8-Jul	7.0	18.1	0.2	8.9	2.2
9-Jul	8.2	8.0	0.6	0.9	5.8
10-Jul	11.5	3.2	8.8	0.2	1.0
11-Jul	7.8	19.1	2.8	10.1	1.2
Totals	109.3	220.2	26.0	121.2	32.2

Solar Decathlon Project Comparison of 3 Cases:

- 1. No PV
- 2. PV with no storage
- 3. PV with storage

Reasons for electrical storage

3. PV generation needs to be more constant due to variations during partly cloudy days

Solar Thermal

- ☐ Three solar thermal collectors with very different geometries
 - ❖Flat Plate (Alternate Energy Technologies)
 - Compound Parabolic Concentrator (Solargenix)

- ❖Heat Pipe Tube (Solar Collectors Inc)
- □ All mounted at fixed angle on the roof

Meteorological instrumentation Ambient Temperature and Humidity Wind Speed and Direction Tipping Rain Bucket

Solar Radiation instrumentation Direct Beam Radiation (DNI) Global Diffuse Radiation (GDIFF) Plane of Aperture Radiation (POA)

Sample of Solar/Storage projects under way in the U.S.

- □ Duke Energy Rankin Substation
 - Sodium Nickel Chloride for PV smoothing
- □ Duke Energy Marshall Substation
 - Lithium Ion for Peak Shaving
- □ Chevron Santa Rita Jail Micro grid project
 - * Lithium Ion for PV smoothing and Load shifting
- □ San Diego Gas and Electric
 - Lithium Ion for PV Smoothing
- PNM ARRA Funded Solar Smoothing and Load Shift
 - Advanced lead acid batteries

From: Brad Roberts presentation, Electricity Storage Association, SunSpec Alliance Member's Summit 2013, Las Vegas, NV.

Public Service of New Mexico ARRA Project for Solar Integration with Storage

From: Brad Roberts presentation, Electricity Storage Association, SunSpec Alliance Member's Summit 2013, Las Vegas, NV.

PNM Project to Demonstrate Smoothing and Load Shifting of Solar Energy

- □ Project utilizes two advanced lead-acid technologies from East Penn Manufacturing
- Advanced lead acid for load shifting the solar peak to allow for dispatching at the highest load peak
- UltraBattery for smoothing of the solar output to demonstrate the high cycling capability of the technology
- □ Battery Ratings:

Advanced Lead Acid.....250 kW for 4 hours UltraBattery......500 kW for 30 minutes

From: Brad Roberts presentation, Electricity Storage Association, SunSpec Alliance Member's Summit 2013, Las Vegas, NV.

Kansas Hybrid Wind Solar & Storage Project Overview

Use the SPP methodology to establish average capacity credit for the summer months:

- □ A stand-alone solar facility yields 50% more capacity than wind
- □ A hybrid facility yields 80% more capacity credit than one wind and one solar stand-alone facility
- □ A hybrid facility with 6 hours of storage yields 160% more capacity credit than the stand-alone wind and solar facilities
- Values based on a hybrid facility of 100 MWs of wind, 20 MWs of solar and 15 MWs of storage for 6 hours. These are the optimum values for maximum benefit

From: Brad Roberts presentation, Electricity Storage Association, SunSpec Alliance Member's Summit 2013, Las Vegas, NV.

