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Abstract 

Item response theory (IRT) methods seek to model the way in which latent psychological 

constructs manifest themselves in terms of observable item responses; this information is useful 

when developing and evaluating tests, as well as when estimating examinees’ scores on the 

latent characteristics in question.  After providing an overview of the most popular IRT models 

(i.e., those applicable to dichotomously scored or keyed items) and contrasting them with the 

techniques used in classical test theory (CTT), we illustrate the application of the IRT approach 

using data from the recent revision of the Myers-Briggs Type Indicator (MBTI; Myers, 

McCaulley, & Quenk, in press).  The MBTI results highlight a number of the advantages that 

IRT provides over CTT-based methods, including (a) detailed descriptions of the performance of 

individual test items; (b) indices of item- and scale-level precision that are free to vary across the 

full range of possible scores; (c) assessments of item- and test-level bias with respect to 

demographic subgroups of respondents; (d) measures of each examinee’s response-profile 

quality and consistency; and (e) computer-adaptive test (CAT) administration, which can 

dramatically reduce testing time without sacrificing measurement precision.   
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Item Response Theory 

 Although item response theory (IRT) methods have been in existence for over half a 

century (e.g., Lord, 1952; Tucker, 1946), only recently have they begun to achieve widespread 

popularity in psychological assessment, especially outside the realm of large-scale, standardized 

aptitude and achievement testing.  One very practical reason for this belated popularity is the fact 

that IRT techniques tend to be far more computationally demanding than methods of test 

construction and scoring that are based on classical test theory (CTT); prior to the widespread 

availability of efficient computer software (e.g., Mislevy & Bock, 1983) and affordable 

computer hardware, IRT methods were simply too difficult and expensive for most test users and 

developers to implement.  Indeed, some of the most useful applications of IRT technology – such 

as computer-adaptive testing (CAT; e.g., Sands, Waters, & McBride, 1997) – became practical 

only as a result of the dramatic improvements in computer price/performance that occurred over 

the past 10-15 years. 

Initially, IRT methods were developed primarily for use with standardized achievement 

and aptitude tests composed of multiple-choice items scored in a “right/wrong” format, such as 

the Scholastic Aptitude Test (SAT; e.g., Lord, 1968).  Although instruments of this type are 

indeed used by counseling psychologists, measures of personality, attitudes, and interests are 

also critically important.  Fortunately, IRT methods are not confined to traditional 

ability/achievement tests, and they are increasingly being applied to personality, attitude, and 

similar inventories containing items that are scored in a dichotomous fashion, such as checklists 

and inventory-type items that can be “keyed” in a given direction (e.g., Brown & Harvey, 1998; 

Drasgow & Hulin, 1990; Harvey & Thomas, 1996).  Recently, increased interest attention has 

also been devoted to IRT models that are capable of analyzing items that are rated using either 
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ordered-category scales (e.g., Likert-type) or unordered, nominal scales (e.g., Bock, 1972; 

Samejima, 1979; Thissen & Steinberg, 1985); the addition of these polytomous models renders 

the IRT approach applicable to virtually any type of standardized psychological assessment 

instrument. 

As will be described below, IRT offers many important advantages over CTT-based 

methods of test development and scoring; indeed, now that the primary technological obstacle to 

its widespread use (i.e., the availability of inexpensive, powerful personal computers) has been 

removed, it is not unreasonable to predict that IRT-based methods – also referred to as “modern 

test theory” (e.g., Embretson, 1996) – will largely replace CTT-based methods over the coming 

years.  Consequently, it is important that counseling psychologists become familiar with both the 

theoretical and practical aspects of IRT so that they will be prepared to interpret inventory results 

for their clients, as well as to select, evaluate, and develop new tests that use IRT technology.  

Consistent with its origins in tests of educational achievement and aptitude, IRT methods are 

already well known among educational researchers – especially the 1-parameter, or Rasch model 

(e.g., Wright, 1977).  IRT has also achieved wide use among industrial/organizational 

psychologists (e.g., Drasgow & Hulin, 1990), in part due to its ability to quantify the degree to 

which tests exhibit consistent bias with respect to race, sex, age, or other demographic factors.  

Our goal in this article was to provide an overview of the most popular IRT models, and 

then illustrate the practical application of IRT methods using the recently revised Myers-Briggs 

Type Indicator (MBTI; Myers, McCaulley, & Quenk, in press).  The MBTI results highlight a 

number of the ways in which IRT provides a richer view of item- and test-level performance 

than is possible using CTT methods; in addition, they underscore the important fact that IRT 

methods are not limited to traditional ability/aptitude tests, providing the same benefits for 
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personality, interest, and other inventories that do not employ right/wrong items and response 

formats. 

Overview:  IRT Models and Methods 

IRT models have been developed to deal with responses to items that are scored in either 

a dichotomous (i.e., only two possible scored responses exist, such as true/false, 

correct/incorrect, endorsed/not endorsed, etc.) or a polychotomous or polytomous (the former 

term being used in earlier IRT literature, with the latter supplanting it in more recent years) 

fashion (i.e., more than two possible scored values are possible, such as Likert-type attitude or 

opinion-survey items).  With regard to the former category, it is important to emphasize that the 

IRT models for dichotomous items are not restricted to 2-alternative multiple choice formats; 

that is, they can be applied to multiple-choice items that possess any desired number of response 

alternatives, and even to non multiple-choice, free-response items.  In short, the primary 

requirement is that each person’s item response has the ability to be scored to produce a 

dichotomy, not that the item response itself was dichotomous, or that the item was phrased in a 

right/wrong fashion.  

A consideration of all of the IRT models that have been advanced to date is well beyond 

the scope of this article; instead, we will limit our coverage to IRT models for dichotomously 

scored items, given that (a) these IRT models have received considerably more research 

attention, and practical usage, than models for polytomous data (although this situation may 

change in the future, as polytomous models become more fully developed, and they see wider 

application); (b) an understanding of the dichotomous IRT models is effectively a prerequisite 

for dealing with the more complex polytomous models; and (c) dichotomous IRT models are 

applicable to a broad range of assessment instruments.  For readers interested in more detailed 
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treatments of IRT in general, or polytomous IRT models in particular, a number of sources are 

available for further reading (e.g., Drasgow & Hulin, 1990; Hambleton, Swaminathan, & Rogers, 

1991; Hulin, Drasgow, & Parsons, 1983; Lord, 1980; Lord & Novick, 1968; Samejima, 1979; 

Sands et al., 1997); in particular, the van der Linden and Hambleton (1997) text provides a 

comprehensive overview of a number of more advanced IRT models and topics (e.g., partial-

credit models, models allowing multiple response attempts, as well as nonparametric, 

nonmonotone, and multidimensional models).  

Assumptions and Terminology 

Unidimensionality.  Traditionally, IRT models have been based on the assumption that 

the item pool being analyzed is effectively unidimensional, although some attempts to develop 

multidimensional IRT models have been made (e.g., Muthen, 1984).  Given that IRT techniques 

are typically applied to instruments whose dimensional structure has already received significant 

empirical study (e.g., using exploratory or confirmatory factor analytic methods), the assumption 

of unidimensionality does not typically represent an undue practical restriction.  That is, for 

instruments composed of multiple subtests or scales, each subtest can simply be analyzed 

separately using a unidimensional IRT model (as was done when IRT was used to develop the 

most recent revision of the MBTI, discussed below).   

Of course, in practice no scale composed of a reasonable number of items will ever be 

perfectly unidimensional.  Fortunately, research designed to assess the impact of violations of 

the unidimensionality assumption (e.g., Drasgow & Parsons, 1983; Hulin et al., 1983) has 

suggested that the unidimensional IRT models are relatively robust with respect to moderate 

violations of strict unidimensionality, and that the most important issue concerns the relative 

degree to which the item pool is dominated by a single latent trait.  



IRT - 7 

The latent trait.  The unobserved characteristic that is presumed to be responsible for the 

observed responses that are made to the test’s items is denoted theta (θ); it is analogous to the 

“true score” in CTT.  For convenience, θ is assumed to be scaled as a z-score, although the θ 

metric can be transformed to any desired unit size and origin.   In unidimensional IRT models, 

the observed responses to a test item are assumed to be determined by the joint action of θ and 

the characteristics of the item in question (e.g., difficulty, discrimination).    

Homogeneous sub-population (HSP).  The concept of the HSP is important for 

understanding a number of issues in IRT; fortunately, it’s a simple one.   Rather than being an 

assumption of IRT models per se, an HSP is instead simply a collection of individuals who are 

homogeneous with respect to their scores on the underlying construct (θ) being assessed.  For 

example, in a large administration of a test given to 10,000 individuals, we might find 100 who 

score 1.6 z units above the mean.  In most cases, the HSP is defined using the “true” θ score; if 

HSPs are formed in practice (e.g., when computing empirical item characteristic curves; see 

below), the estimated θ score must be used instead. 

Probability of item endorsement (PIE), or probability of a correct response (PCR).  IRT is 

an item-focused approach, and consequently the most basic data used in IRT are the responses to 

individual test items.  In optimal-performance tests, these are the scored right/wrong responses; 

for inventory-format tests, some form of keying system is applied to convert the item responses 

to dichotomous responses (e.g., for a scale on a personality test designed to measure 

introversion-extraversion, the ‘introvert’ response[s] to each item could be selected as the 

‘keyed’ response).  For any given sample of examinees, the PCR/PIE is defined as the proportion 

of respondents, in each homogeneous sub-population of interest, giving the correct (or keyed, in 

the case of an inventory-format test) response to the item.   



IRT - 8 

Item characteristic curve (ICC) or item response function (IRF).  One of the most 

important relations in IRT is the one that exists between the underlying construct of interest (θ) 

and the response to each test item; indeed, the primary differences between the various IRT 

models concern the form of the causal relationship that is presumed to exist between θ and the 

observed item response.   The ICC or IRF (these terms are used interchangeably in the literature; 

in this paper we will use ICC to denote this functional relationship) is a 2-dimensional scatterplot 

of θ (x-axis) by item-response probability (PCR or PIE), depicting the item response that would 

be expected from an HSP located at any given point on the underlying construct; Figure 1 

presents a sample ICC. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 1 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

The dark line in Figure 1 depicts the ICC for a moderately “difficult” item (if seen in a 

right/wrong test):  the horizontal reference line corresponds to a 50% correct (endorsed) response 

level, and the vertical reference line locates the HSP that would be expected to get this item right 

50% of the time (or, for a non right/wrong item, to endorse the item in the keyed direction 50% 

of the time).   In this example, the group of respondents located at θ = 1.0 (i.e., the 84th percentile 

in a normal distribution) would be expected to exhibit a .50 PCR level for this item; in contrast, 

in the HSP located at θ = 0 (i.e., the mean, in a z-score metric), we would expect only about one 

in five of the respondents to get this item correct (or endorse it in the keyed direction).    

Of course, we do not mean to imply by the above example that IRT models necessarily 

assume that the θ distribution follows any particular form (e.g., a Normal distribution); on the 

contrary, when using Bayes modal or similar methods to estimate θ scores (e.g., Bock & 
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Mislevy, 1982), researchers are free to assume virtually any given shape for the population θ 

distribution.  Likewise, when estimating the unknown item parameters of the IRT models, there 

is no need to make rigid assumptions regarding the form of the θ distribution (e.g., Bock & 

Aitkin, 1981). 

IRT Models 

 All unidimensional IRT models share the assumption that a single underlying latent 

construct (θ) is the primary causal determinant of the observed responses to each of the test’s 

items.  They differ with respect to the way in which θ is presumed to cause the item response; 

the three most popular IRT models for item responses that can be expressed dichotomously are 

discussed below.  In particular, these models differ with respect to the number of parameters they 

require in order to model the responses to each test item.  In all cases, the item parameter(s) 

effectively define the form of the causal relation that exists between θ and the observed item 

response:  that is, the relation between θ and PCR/PIE is typically assumed to vary across the 

possible range of θ scores as a function of the item parameter(s).  

1-parameter logistic model.  The 1-parameter logistic (1PL), or Rasch (e.g., Wright, 

1977) model is one of the simplest IRT models; as its name implies, it assumes that only a single 

item parameter is required to represent the item response process.   In the 1PL model, this item 

parameter is termed difficulty (abbreviated b in most of the IRT literature, although some authors 

– especially those focusing on the Rasch model – employ different nomenclature); operationally, 

it is defined as the score on θ that is associated with a 50% likelihood of a correct/endorsed item 

response.  In the hypothetical item presented in Figure 1, the b parameter would equal 1.0 (i.e., 

the point at which the ICC intersects the horizontal reference line at PCR = 0.50).   

It should be noted that the difficulty parameter (b) and θ lie on the same scale, due to the 
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fact that the former is defined directly in terms of the latter.  The fact that the b parameter (which 

defines a characteristic of a test item) lies on the same scale as θ (which defines a characteristic 

of a person being assessed) represents a very important characteristic of IRT models: that is, they 

locate these person and item parameters on a common scale.  In contrast, CTT-based item 

parameters (e.g., proportions of correct responses, item discrimination correlations) lie on a very 

different scale than that used to estimate each respondent’s score on the trait in question.   

By implication, in the 1-parameter model all items in a test exhibit ICCs having the same 

shape; the only characteristic that distinguishes one item’s ICC from another is the left-right 

location of the ICC on the horizontal axis (θ):  i.e., its “difficulty.”  Figure 2 presents ICCs for 

three hypothetical items with b parameters of –1.5, -0.75, and 1.  As an inspection of these three 

ICCs illustrates, the form of the functional relationship between θ and the observed response 

(i.e., the shape of the ICC) is constant across items; all that differs is the level of θ that is 

associated with a given observed probability of a correct/keyed response.  

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 2 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

For example, Item A (solid line) is the least difficult of the three items; even in a group of 

individuals having a relatively low score on θ (i.e., -1.0 z units, or approximately the 16th 

percentile in a normal distribution) – that is, the HSP located at -1.0 – fully 50% of these 

individuals would be expected to provide correct responses to this item.  In contrast, only about 

17% of individuals in the –1.0 HSP would be expected to be able to get Item B correct, and only 

approximately 5% of them would be expected to provide correct responses to Item C. 

2-parameter logistic model.  The main potential drawback to the 1-parameter IRT model 



IRT - 11 

is its assumption that all items in the test share identically shaped ICCs; although this might be 

attainable in an item pool that was very carefully selected from a much larger initial pool of 

items, it would be quite unusual in many applied assessment situations.  In response, the 2-

parameter model adds a parameter – termed discrimination, or a – that allows the ICCs for 

different items to exhibit different slopes.  The discrimination parameter allows us to model the 

fact that some items have stronger (or weaker) relations to the underlying construct being 

assessed (θ) than others; larger values of a denote stronger relations (i.e., in somewhat the same 

way that in a factor-analytic context, items that demonstrate larger loadings on a factor are seen 

to be more strongly related to that factor than items exhibiting smaller loadings).  The a 

parameter is very important in IRT, due to the fact that it directly determines the amount of 

information provided by an item:  items with higher a parameters provide more information 

regarding θ, all other factors being equal.  The ICCs for three hypothetical items having identical 

difficulty, but different discrimination, are presented in Figure 3. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 3 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 As can be seen in Figure 3, the IRT model allows great freedom with regard to the way in 

which θ and the item parameters can combine to produce different observed item-response 

patterns; in the case of these three items, very different results (i.e., expected item-endorsement 

patterns) would be expected depending on which HSC was being considered.  For example, in 

the HSC containing individuals who score at –1.0 θ, we would expect that Item C (the most 

highly discriminating item) would be answered correctly/endorsed at the lowest rate 

(approximately 7%) in this group, with Item B (moderate discrimination) correct/endorsed at a 
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higher rate (15%), and the least-discriminating Item C being correct/endorsed at the highest rate 

(approximately 30%).  In contrast, in the HSC at θ = 0.0, we would expect all three items to be 

correct/endorsed at the same rate (50%), and in the HSC at θ = 1.0, we would expect the pattern 

seen in the HSC at θ = -1.0 to be reversed (i.e., the most-discriminating item would be 

correct/endorsed at the highest rate, and the least-discriminating item at the lowest rate).  

Clearly, if the situation depicted in Figure 3 were found in practice, highly misleading 

conclusions could be reached if the overly-simplistic model being fit by the 1-parameter, or 

Rasch, approach were applied to such data.   

3-parameter logistic model.  Although the 2-parameter model addresses one of the most 

serious criticisms of the Rasch model (i.e., the assumption that all test items are identical with 

respect to their discriminating power), it does not address another potentially important factor 

that may differ across items:  namely, the lower asymptote of the ICC (i.e., the expected 

proportion of correct/keyed responses that would be expected from individuals who have very 

low θ scores).  The 3-parameter model adds one more parameter (c) to the 2-parameter model to 

reflect the fact that the lower asymptote of the ICC may need to adopt nonzero values for their 

effective minimum values (i.e., in both the 1- and 2-parameter models, the lower asymptote of 

the ICC is fixed to zero).   

Initially, when IRT models were developed in the context of right/wrong tests, the main 

reason for postulating the need for a nonzero lower asymptote was the fact that in tests composed 

of multiple-choice items, individuals who did not know the correct answer could be expected to 

guess (and they would occasionally guess the correct response).  Thus, even HSPs composed of 

examinees with extremely low θ scores might well be expected to produce decidedly nonzero 

rates of “correct” responses to difficult test items due to guessing.  Later, when IRT models 
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began to be applied to tests composed of items that were not rated in a right/wrong fashion (e.g., 

Harvey & Murry, 1994, used the 3-parameter IRT model to analyze the keyed responses to the 

MBTI), although “guessing” was not a particular concern, it was still possible that some items’ 

ICCs would not exhibit zero lower asymptotes (e.g., due to social desirability, or the relatively 

extreme nature of some items).   

Figure 4 presents three hypothetical ICCs for items with identical a and b parameters (1.0 

and 0.0, respectively), differing only in their c parameters (0.0, 0.25, and 0.5), representing the 

situation in which effectively no guessing or social desirability was present or possible (Item A; 

e.g., if this were a right/wrong item, this might occur in a non-multiple-choice, open-ended 

response item in which the chance of guessing the correct response was very small); a moderate 

level of guessing was expected (Item B, which might correspond to a 4-alternative multiple-

choice item); and guessing was very easy (Item C, which might correspond to a 2-alternative 

multiple-choice item, such as would be seen in true/false, endorsed/not endorsed, or checklist-

format items).   

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 4 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

The ICCs in Figure 4 illustrate the unavoidable effect of increasing the c parameter in the 

3-parameter IRT model:  namely, reducing the effective discriminating power of an item (and 

thereby, reducing the level of information it provides while simultaneously increasing its 

effective level of difficulty, given that difficulty is defined as the midpoint between the lower 

and upper asymptotes of the ICC).  In the context of a right/wrong item, this concept is relatively 

easy to understand anecdotally:  i.e., the easier it becomes to guess the correct response to an 
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item, the less informative that item becomes with respect to providing us with information that is 

useful in estimating the θ score for the person completing the test.  Conversely, the more difficult 

it becomes to guess the correct answer, the more diagnostic a correct (or incorrect) answer 

becomes.   

Differences Between IRT vs. CTT 

Most of the tests and inventories used by counseling psychologists have been developed 

using CTT;  IRT derives from what is called modern test theory, and is one of the methodologies 

that have resulted in what Embretson (1996) calls “the new rules of measurement.”  A number of 

important differences exist between CTT- versus IRT-based approaches to both test development 

and evaluation, as well as the process of scoring the response profiles of individual examinees; 

these differences are summarized below.  

Item-level focus.  Although tests have always been composed of multiple items, IRT 

takes a much more item-level focus than CTT, which tends to focus more on test-level indices of 

performance (e.g., the overall reliability coefficient, or standard error, of a scale).  In particular, 

the focus on estimating an ICC for each item provides an integrative, holistic view of the 

performance of each item that is not readily available when using CTT-based methods to 

develop or examine a test.  That is, although CTT can quantify the total-sample difficulty (e.g., 

as a p value) or discrimination (e.g., as an item-total biserial correlation) for an item, it lacks an 

effective means for simultaneously combining and presenting this information (including the role 

of guessing, or other factors that might lead to a nonzero lower asymptote) in an easily-used 

format. 

Continuous view of information and SE.  The concept of information in IRT is roughly 

analogous to the concept of reliability in CTT, in the sense that higher levels denote better 
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measurement precision (or conversely, freedom from undesirable errors of measurement).  In 

IRT, higher levels of information are produced when items have higher discrimination (a) 

parameters, and smaller lower-asymptote (c) parameters.  Similarly, the standard error (SE) 

associated with a particular θ score estimate is inversely related to information in IRT, much as 

the standard error of measurement (SEM) is inversely related to the reliability of a test in CTT.   

The critical difference is that in IRT, we need not assume that the test is equally precise 

across the full range of possible test scores, as is effectively the case when CTT-based methods 

are used.  Whereas in CTT a single number (e.g., the internal-consistency reliability coefficient, 

or the SEM based on that reliability) would be used to quantify the measurement-precision of a 

test, a continuous function is required in IRT to convey comparable data, given that in the IRT 

approach, a test need not be assumed to possess a constant degree of measurement-precision 

across the entire possible range of scores.  Figure 5 presents the item information functions (IIFs) 

for the three hypothetical items presented in Figure 4. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 5 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 The IIFs presented in Figure 5 illustrate two important aspects regarding item-level 

information when using the 3-parameter IRT model:  (a) the height of the maximum point in the 

information function is directly reduced by the c parameter; and (b) the location of the point of 

maximum information is shifted rightward from the value that would be expected in the 1- and 

2-parameter models (i.e., at θ = b) in an amount that is proportional to the size of c.  

Test development: item selection, scoring.  The IRT-based approach to test development 

has the advantage of allowing the test developer to easily determine the effect of adding, or 
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deleting, a given test item or set of test items by examining the test information function (TIF) 

and/or test SE (TSE) function for an item pool.  The TIF is computed simply as the sum of the 

item information functions for the items in the pool being examined; by examining the change in 

the shape of the TIF or TSE functions after adding/deleting items, and comparing this to the 

desired performance curve, tests can be tailored closely to desired specifications.  Under CTT, 

only much less sensitive measures (e.g., the global coefficient alpha or SEM for a given test) are 

available.  

With respect to test scoring, IRT-based methods – especially those based on the 2- or 3-

parameter models – offer considerable advantages over the “number right” scoring methods 

typically used in CTT-based tests.  Specifically, when estimating an examinee’s score using IRT, 

we can simultaneously consider the following sources of information:  (a) which items were 

answered correctly/incorrectly (or in the keyed vs. non-keyed direction); and (b) for each of 

those items, the difficulty, discrimination, and nonzero lower-asymptote parameters of the item.  

This offers the potential to produce better estimates of the θ scores, to produce quantitative 

estimates of the “quality” or likelihood of any given observed response profile (termed 

appropriateness indices; e.g., Drasgow, Levine, & McLaughlin, 1987), and to assess the degree 

to which the given IRT model provides a good “fit” to the pattern of responses produced by the 

individual in question.. 

Differential item functioning.  One of the important issues faced by counseling 

psychologists is that of responding to the diversity of clients.  In particular, it is important that 

the tests used by counseling psychologists be free of systematic demographic subgroup bias.  

IRT techniques provide a powerful means of testing items for bias, using what is know as 

differential item functioning (DIF), as well as assessing the cumulative effect of any item-level 
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bias on the test’s total score (which in many situations is the most important “bottom line” issue; 

e.g., Drasgow, 1987).   

In contrast, CTT-based methods of assessing bias are fundamentally limited, especially 

approaches that base their assessment of bias on the presence of group mean differences in total 

tests scores across demographic groups, or on differential item-passing/endorsement rates 

between subgroups (e.g., Drasgow, 1987).  In essence, such methods cannot distinguish between 

the situation in which (a) the subgroups have different means, and the test is biased, versus (b) 

the means differ, but the test is not biased (i.e., one group truly has a higher average on the test).    

Computer-adaptive testing (CAT).  One of the potentially most important differences 

between CTT- versus IRT-based testing concerns the issue of administrative efficiency (i.e., 

reducing testing time) and item-banking (i.e., developing calibrated item pools from which 

subsets of items can be selected for each individual tested).  Whereas CTT-based indices of test 

functioning – and especially, scoring – are fundamentally based on the assumption that the entire 

item pool is going to be administered to each examinee, IRT-based methods can easily deal with 

the situation in which different examinees are presented with entirely different listings of items, 

or different numbers of items.  This is due to the fact that the scoring methods used in IRT to 

estimate each examinee’s θ score can produce estimates that lie on a common θ score metric 

even if there is little – or no – overlap between examinees in terms of the test items that are 

administered; in contrast, the “number right” scoring methods typically used in CTT-based 

approaches are highly dependent on having the same list of items be presented to each examinee.   

A growing number of implementations of IRT-based tests (e.g., Sands et al., 1997) have 

demonstrated that reductions in testing time of up to one-half can be achieved by using CAT 

methods to tailor the administration of test items to the estimated level of θ for each examinee, 
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without compromising the measurement precision or security of the test.  This is a tremendously 

important feature for counseling psychologists, as it allows them to either achieve dramatic 

reductions in overall testing time, to administer a larger number of different tests in the same 

amount of time as was required using non-adaptive administration methods, and to tailor the 

selection of test items so as to produce a test that produces its highest degree of measurement 

precision in a specified range of the θ scale.   

Application: The Use of IRT to Revise the  

Myers-Briggs Type Indicator 

 To illustrate the relevance of IRT to counseling psychologists, we consider the recent 

revision of the Myers-Briggs Type Indicator (MBTI; Myers, McCaulley & Quenk, in press).  

This example represents a real-life application of how IRT was used to revise a widely-used 

instrument.  There are a number of reasons why the MBTI revision provides a good example of 

IRT techniques.  First, the MBTI is generally well-known by counseling psychologists (Graff, 

Larrimore, Whitehead, & Hopson, 1991).  Most practitioners or researchers in the field, even if 

they do not use the instrument themselves, are at least likely to be familiar with its concepts and 

the associated measurement issues.  Second, this example shows how IRT can be used to 

develop or revise a personality instrument; although frequently applied to right/wrong, aptitude 

and achievement tests, IRT methods have not been as widely used with other instruments, even 

those that lend themselves easily to dichotomous item-level keying (e.g., the MBTI).  Third, the 

use of IRT with the MBTI demonstrates the broad applicability of IRT to different kinds of 

measurement problems, since the MBTI is a theory-driven instrument designed to measure types 

rather than traits when giving feedback to examinees.  
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 The MBTI is comprised of four bipolar preference scales that attempt to measure Jung’s 

theory of psychological types.  Each scale is composed of a set of forced-choice items, with the 

four scales being Extraversion-Introversion (E-I), Sensing-Intuition (S-N), Thinking-Feeling (T-

F), and Judging-Perceiving (J-P).  There were two primary measurement problem faced by those 

working on the MBTI revision.  The first involved the issue of how to select items for the 

instrument; the second being the issue of how to score those items in order to arrive at a four-

letter categorical type.    

In all cases, given the lack of a right/wrong answer, item responses were keyed, with a 

‘1’ response being given if the item was endorsed in the I, N, F, or P direction, and a ‘0’ 

response for answers in the E, S, T, or J direction.  The choice of a keyed direction is completely 

arbitrary, having the effect of simply setting the direction of the θ scale for each of the four 

MBTI scales.   

Item Selection 

The method previously used in the MBTI to select items and provide a classification on 

each scale employed what were called “prediction ratios” (PRs).  A prediction ration was 

computed for each response to each MBTI item by dividing the percentage of people holding the 

target preference who answered an item in the keyed direction (e.g., a person with a preference 

for Thinking who chose the response keyed to Thinking) by the percentage of everyone 

answering that item in the keyed direction.  Based on previous research, Myers selected items for 

inclusion on the MBTI if the prediction ratio for at least one of the responses was >.62 (e.g., 

Myers & McCaulley, 1985).  There were other criteria as well, including rejecting any item for 

which greater than 50% of the people with the non-targeted preference responded in the keyed 



IRT - 20 

direction, item-to-scale correlations, linguistic and theoretical criteria.  These latter, however, are 

not relevant to this example.  

 The first step in the use of IRT to select items for the revised MBTI involved the 

calculation of the item parameters for the 3-parameter IRT model described above.  IRT 

parameters can obviously be used to select items with different properties and tailor item 

selection to a given purpose; the important question in the context of the MBTI revision was: 

what properties of MBTI items would be consonant with the MBTI theory?  This theory posits 

that a person will demonstrate a preference for one pole or the other of each of the four bipolar 

scales, and that this preference represents a qualitative difference, not a quantitative one.  

It was therefore desirable to have items that would help sort people into the correct 

qualitative preference categories, which in IRT terms is essentially a problem of choosing items 

whose maximum amount of information, or discrimination, occurred around the midpoint of 

each scale (the midpoint of the θ scale approximating the cutoff point that would assign 

examinees into the categorical types).  Given the theory on which the MBTI is based, “good” 

items would be those that demonstrated ICCs like the one seen in Figure 6, which represents the 

empirical ICC produced for Item 3 in Form M, a high-performance item from the E-I scale (i.e., 

“quiet and reserved,” the ‘I’ keyed response, vs. “good mixer,” the ‘E’, non-keyed response). 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figures 6-8 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 The ICC depicted in Figure 6 demonstrates that for this item the measurement model 

underlying IRT fits the MBTI data very well:  that is, the ICC is clearly non-linear, and there is 

relatively little “scatter” around the nonlinear regression line fit through the item-endorsement 
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percentages computed in each of the HSPs.  People whose preference for Extraversion in general 

have little probability of selecting the response keyed to Introversion (“quiet and reserved”), and 

vice versa.  For example, considering those HSPs that endorsed less than 20% of the total 

number of E-I items in the keyed (I) direction – that is, very clear Extraverts – we see virtually 

zero rates of endorsement of the Introvert alternative to this item.  Likewise, among clear 

Introverts – those endorsing 80% or more of the items in the I direction – we observe 

endorsement rates for the keyed response in the 100% range.  In the transition region, the ICC 

exhibits a sharp slope, with a very good approximation being provided by the nonlinear 

regression line.    

It is the preference itself, and not the “score” or “strength” of the preference, that 

primarily determines the likelihood that a person will respond to the item in the keyed direction, 

according to Myers’ type theory.  From that perspective, the item in Figure 6 exhibits precisely 

the kind of ICC that would be desired:  that is, at the high (I) and low (E) ends of the θ scale, 

respondents are near-unanimous with respect to their patterns of endorsing (or not endorsing) the 

item in the predicted direction; only in the middle ranges of the θ scale do we find intermediate 

levels of endorsement, and this transition zone is relatively narrow.   

Without the use of IRT when constructing or revising this scale, we might run the danger 

of choosing items like the one shown in Figure 7; this item was included in the tryout form of the 

revised MBTI (Form X), but it was not retained for use in the final Form M.  The primary reason 

this item was not retained can be seen in Figures 7 and 8:  Figure 7 shows that the ICC for this 

item exhibits a very different shape than the ICC for the high-performance item depicted in 

Figure 6; in particular, it has a much more shallow slope (hence, less discriminating power).  

Figure 8 presents the IIFs for these two items, showing quite graphically that the item in Figure 6 
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produces far more information regarding θ -- especially in the middle region of the θ scale, 

where the type cutoff point would be located – than the item in Figure 7. Accordingly, good 

items from the perspective of revising the MBTI using IRT methods are those that produce the 

most information, and that produce their maximum information in the middle region of the θ 

scale (i.e., so as to maximize test precision near the type cutoff point). 

 Note that a “good” item for the purposes of the MBTI does not necessarily have to 

assume the shape of a step function (i.e., an ICC in which all people holding the non-keyed 

preference respond in the non-keyed direction, and all people holding the keyed preference 

respond in the keyed direction, with essentially zero transition from one to the other).  Although 

there may be some items that begin to approach this goal (such as the one shown in Figure 6), it 

is not required that all items assume this ideal form because neither Jung nor Myers believed that 

everyone was a “type.”  The fact that even the best of the MBTI items (i.e., the ones with the 

highest discrimination parameters) do not precisely conform to the ideal of a step-function ICC 

demonstrates the theoretical proposition that for various reasons, including developmental or 

situational factors, a given person at a given time will have some chance of responding to an 

item in a direction opposite that of his or her preference.  

 It is important to note that the criteria noted above are not necessarily those that would be 

adopted if one were interested in discriminating among people at many different points along a 

scale, or across the entire possible range of θ values.  For example, a psychologist designing an 

aptitude or achievement test would probably want a set of items whose maximum information 

occurred at evenly spaced points along the continuum of latent achievement levels, given that the 

test’s goal would be to produce the most precise estimate of θ for the largest range of possible 

examinees. 
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 For the MBTI revision, having established the general criteria of “S” shaped curves 

whose maximum slope occurred somewhere close to the midpoint of the each scale, the next step 

was to estimate the three IRT parameters for each item using the initial item pool contained in 

the tryout version of the instrument.  Items whose parameters produced ICCs of the general 

shape as those in Figure 6 were selected for further research, and subjected to additional 

empirical and theoretical criteria; those producing ICCs more like Figure 7 were discarded.  

A number of items were also discarded as a result of DIF analyses using subgroups for 

gender, and for three age-based groupings.  For example, consider the MBTI item, 

“Do you usually 

(A) show your feelings freely, or 

(B) keep your feelings to yourself?” 

Based on the traditional prediction-ratio method, this item was used on the Extraversion-

Introversion scale of an earlier version of the MBTI.  Although the response scoring weights 

indicated that it was not highly discriminating item, its power was sufficiently good to cause it to 

be retained; additionally, it did not employ differential scoring weights for men and women (only 

selected items on the Thinking-Feeling scale used differential scoring).   

However, DIF analysis (see Figure 9) revealed that the item responses for this item were 

significantly different for men and women, and consequently this item was dropped from the 

revised form.  As the subgroup ICCs presented in Figure 9 illustrate, even when males and 

females shared identical standing with respect to the E-I preference (θ), males were consistently 

more likely to endorse the response keyed in the Introvert direction than females.  For example, 

consider the HSP of respondents holding scores of –1.0 θ units (i.e., relatively clear Extraverts); 

approximately 40% of the males in this subgroup endorsed the Introvert response to this item, 
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whereas only about 30% of females holding the identical θ score endorsed the Introvert 

response.  This pattern of males being approximately 10% more likely to endorse the keyed 

(Introvert) response to this item is consistent across most of the θ scale, indicating that some sort 

of systematic difference between males versus females other than their scores on the E-I scale 

was affecting their responses to this item.  In this case, it is tempting to speculate that this 

difference is a function of the emphasis on “feelings” in the item.  That is, in addition to 

measuring the E-I preference, this item may also effectively function as an indicator of the 

Thinking-Feeling preference.  In view of the fact that males tend to score lower, on average, than 

females on the Thinking-Feeling preference (e.g., Myers & McCaulley, 1985), it is not surprising 

to find that males would be more likely to endorse the “non-feeling” alternative (i.e., the one 

keyed toward Introversion), all other things (including their score on the E-I preference) being 

equal. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 9 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

In summary, the use of IRT DIF analysis during the MBTI revision led to the following 

conclusions:  (a) not all of the items with significant gender differences were found on the TF 

scale, (b) some of the items with separate weights on the Thinking-Feeling scale on the previous 

version did not show significant DIF, (c) there were a small number of items that showed age-

related DIF, and (d) once the gender and age-related items that showed significant DIF were 

dropped from the scales, it was possible to demonstrate that there was no DIF at the scale level, 

which is the level at which classifications decisions are made.  Although ultimately affecting 
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only a small portion of respondents, all of these findings represented an advance in the 

understanding of MBTI item functioning due to the use of IRT DIF methods.  

Scoring 

IRT is used to score MBTI items using a weighted maximum-likelihood approach (e.g., 

Bock & Mislevy, 1982) that is sensitive not to simply the number of items endorsed in the keyed 

direction, but to the simultaneous considering of the direction of the item response and the a, b, 

and c parameters for each item.   The basic maximum-likelihood scoring method produces a 

likelihood function for each examinee that ranges across the entire possible scale of θ, and shows 

how likely a given θ score would be, given the observed pattern of item responses produced by 

that person, and considering our knowledge of the a, b, and c parameters for the items that were 

administered.  By examining this likelihood function, we can identify the most likely value of θ 

that would be consistent with the observed item responses, and use this value as our estimate of 

θ for that person.  Figure 10 presents likelihood functions for three profiles of responses to the E-

I MBTI items. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Insert Figure 10 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 In Figure 10, the solid line represents the likelihood function for an individual who holds 

a preference in the non-keyed (E) direction on the E-I scale, as seen by the fact that the peak of 

the likelihood function occurs to the left of the middle point of the scale; likewise, the function 

for the dotted line depicts a person who holds the keyed (I) preference, given that the location of 

the maximum occurs to the right of the type cutoff point.  The height of the likelihood function, 

at its maximum, also provides important information in IRT scoring:  the higher the maximum, 
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the more “likely” the θ score estimate is indeed accurate, and consistent with the underlying IRT 

model being assumed.   

The third profile in Figure 10 (heavy dashed line) was obtained using random responses 

to the E-I items; comparison of this likelihood function against the two produced using real data 

reveals that the random-data profile does not exhibit a maximum value that is clearly toward one 

pole or the other, and of greater importance, the height of the likelihood function for the random-

data profile is significantly lower than the height for either of the two real-data profiles.  This 

information on the height of the likelihood function can be used (e.g., Drasgow, Levine, & 

McLaughlin, 1987) to produce appropriateness indices that quantify the degree of consistency or 

plausibility of each observed item-response profile; such indices are of potentially significant 

practical importance (e.g., in detecting invalid, questionable, faked, or erroneous profiles). 

Summary 

Benefits of the IRT approach include the fact that it provides a much more detailed view 

of item-level and test-level functioning (e.g., with respect to information and standard errors); it 

can be adapted to many different kinds of tests; the score estimation process is more precise, 

allowing simultaneous consideration of both the number of right/endorsed items as well as the 

properties (e.g., discrimination, difficulty) of each item, when estimating each person’s score on 

the construct being assessed; the degree to which the IRT model fits consistently across 

demographic subgroups of respondents (e.g., males vs. females) can be assessed in order to 

document the lack of subgroup-bias in a test (e.g., Gratias & Harvey, 1998; Harvey, 1997); “fit” 

statistics that quantify the plausibility of each observed item-response profile can be calculated 

and used to target responses for closer examination; and CAT methods can be used to 
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dramatically reduce test administration time if the test can be administered in a computer-based 

format (e.g., Laatsch & Choca, 1994; Sands et al., 1997; Waller & Reise, 1989).   

Of course, when we use IRT to develop and score tests it is important to remember that 

we are indeed fitting a specific mathematical model to our empirical data, and that this model 

incorporates certain assumptions; as with any other multivariate data analytic method, certain 

caveats need to be kept in mind.  First, there is no guarantee that the model underlying the given 

IRT approach (e.g., 1- vs. 2- vs. 3-parameter logistic) will indeed provide an adequate degree of 

“fit” to the data; obviously, to the extent that the true relation between item responses and the 

underlying construct(s) of interest do not follow the form that is assumed by the IRT model, 

difficulties in interpretation will arise.  For example, consider the Rasch, or 1-parameter, model:  

despite its continued popularity in some quarters (particularly educational measurement; e.g., 

Wright, 1977), the Rasch model is based on very restrictive assumptions regarding the nature of 

the data being analyzed (e.g., that all items have identical discriminating power, and that 

absolutely no factors that would cause nonzero lower asymptotes of the ICCs, such as guessing,  

are operative).  Although there may be situations in which such restrictive assumptions provide 

an acceptably accurate representation of the processes producing test item responses, they are 

highly questionable for a great many applied assessment situations.  As when fitting any model 

to data, researchers should always attempt to empirically evaluate the degree to which the IRT 

model being used actually provides an acceptable fit to the data being analyzed (e.g., see 

Hambleton et al., 1991).  Indeed, the fact that IRT models offer a variety of powerful methods 

for assessing the degree of model-fit – at both the person- and item level of analysis – can be 

seen as a powerful advantage over traditional CTT-based methods. 
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Another potential issue – although it is certainly not unique to tests that are scored using 

IRT methods – centers on IRT’s assumption that the scales being measured are unidimensional 

in nature.  IRT methods may not be applicable in situations in which this assumption is 

significantly violated, such as when external-criterion based methods of item analysis are used to 

select and score the test items (such as occurs with some personality tests derived using 

empirical keying; e.g., Waller & Reise, 1989).  On the other hand, research has suggested that 

IRT analyses are reasonably robust with respect to violations of the unidimensionality 

assumption, leading Drasgow and Hulin (1990) to suggest that such violations be treated with 

the same degree of concern as violations of assumptions in other standard analytic techniques 

such as regression or ANOVA. 

The MBTI again provides a practical example of the application of this assumption in a 

real case.  In the MBTI revision process described above, IRT analyses for item selection and 

scoring were developed separately for each of the four MBTI preference scales.  In these 

analyses, each scale was assumed to be unidimensional, despite the fact that research has shown 

that each of the four MBTI preference scales can be partitioned into additional subfactors 

(Johnson & Saunders, 1990).  However, research has also shown (Harvey et al., 1995) that the 

four MBTI item pools are each dominated by a single underlying construct; past research (e.g., 

Drasgow & Parsons, 1983; Hulin et al., 1983) has suggested that this is the important factor, not 

that one be able to demonstrate that a 1-factor model can account for 100% of the variance in a 

given item pool.  As analyses such as the empirical ICCs presented in Figure 6 demonstrated, the 

3-parameter IRT model was indeed able to provide a good fit to the MBTI data in each of its four 

scales.  
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 A final limitation on the use of IRT concerns the need for large samples, and relatively 

large numbers of items in each scale.  In the early days of IRT, very large samples were needed 

for practitioners to have a reasonable chance of obtaining accurate and stable estimates of the 

unknown item parameters of the IRT model.  Fortunately, improved statistical algorithms (e.g., 

Bock & Aitkin, 1981) have proven effective in reducing this as a concern, to the point that 

Drasgow and Hulin (1990) suggested that the samples size requirements for IRT are comparable 

to that of factor analysis and similar multivariate methods.  Continued refinements in available 

software programs to implement IRT analyses with respect to performance and ease-of-use are 

likewise occurring (e.g., Gierl & Ackerman, 1996). 

Taken as a whole, then, IRT methods offer a tremendous degree of promise as a powerful 

and flexible method for test development, scoring, and evaluation; as many authors have noted 

(e.g., Embretson, 1996; Hambleton et al., 1991; Sands et al., 1997), they represent a vast 

improvement over approaches based on classical test theory.  Although they are certainly not 

free from potential concerns or limitations, no data-analytic method ever will be 
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Figure Captions 

Figure 1.  Item characteristic curve (ICC) for a hypothetical test item; the horizontal axis 

represents θ (the underlying construct to be measured), with the vertical axis representing the 

observed probability of a correct response (PCR), in the case of a right/wrong item, or the 

probability of a response in the keyed direction.  This item would be a moderately difficult one, 

with a θ score of 1.0 z units above the mean being required to achieve a 50% likelihood of 

producing a correct (or keyed) response.  Item parameters are a = 0.75, b = 1.0, c = 0. 

Figure 2.  Item characteristic curves (ICCs) for three hypothetical test items; the 

horizontal axis represents θ (the underlying construct to be measured), with the vertical axis 

representing the observed probability of a correct response (PCR), in the case of a right/wrong 

item, or the probability of a response in the keyed direction.  These items have identical 

parameters of a = 0.9 and c = 0; they differ with respect to b, with values of θ = –1.0, 0.0, and 

1.0 for items A, B, and C, respectively. 

Figure 3.  Item characteristic curves (ICCs) for three hypothetical test items; the 

horizontal axis represents θ (the underlying construct to be measured), with the vertical axis 

representing the observed probability of a correct response (PCR), in the case of a right/wrong 

item, or the probability of a response in the keyed direction.  These items have identical 

parameters of b = 0.0 and c = 0; they differ with respect to a, with values of 0.5, 1.0, and 1.5 for 

items A, B, and C, respectively. 

Figure 4.  Item characteristic curves (ICCs) for three hypothetical test items; the 

horizontal axis represents θ (the underlying construct to be measured), with the vertical axis 

representing the observed probability of a correct response (PCR.  These items have identical 
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parameters of b = 0.0 and a = 1.0; they differ with respect to c, with values of 0.0, 0.25, and 0.5 

for items A, B, and C, respectively. 

Figure 5.  Item information functions (IIFs) for the three hypothetical test items presented 

in Figure 4; the horizontal axis represents θ (the underlying construct to be measured), with the 

vertical axis representing the amount of information provided by each item. 

Figure 6.  Empirically derived item characteristic curve (ICC) for MBTI item 3 in Form 

M (“good mixer” vs. “quiet and reserved”); the horizontal axis represents θ (the preference on 

the E-I dimension, in this case), with the vertical axis representing the percentage of respondents 

in each subgroup formed using the total number of endorsed items that endorsed the item in the 

keyed (i.e., ‘I’) direction.  The squares represent the percentage of raters in each HSP endorsing 

this item in the keyed (‘I’) direction.   

Figure 7.  Empirically derived item characteristic curve (ICC) for MBTI item 205 in the 

experimental Form X (in business situations, sticking to business vs. adding extra socialization) 

the horizontal axis represents θ (the preference on the E-I dimension, in this case), with the 

vertical axis representing the percentage of respondents in each subgroup formed using the total 

number of endorsed items that endorsed the item in the keyed (i.e., ‘I’, or sticking to business) 

direction.  The squares represent the percentage of raters in each HSP endorsing this item in the 

keyed (‘I’) direction. 

Figure 8.  Item information functions (IIFs) for the two items depicted in Figures 6 (Item 

A) and 7 (Item B); the horizontal axis represents θ (the preference on the E-I dimension), with 

the vertical axis representing the amount of information provided by the item at each point along 

the θ scale.   
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Figure 9.  Subgroup item characteristic curves (ICCs) for males (solid line) versus 

females (dashed line) for E-I item 15 from MBTI Form F/G (keyed [I] response = “keep your 

feelings to yourself”, vs. nonkeyed [E] response = “show your feelings freely”); the horizontal 

axis represents θ (the underlying construct to be measured), with the vertical axis representing 

the observed probability of a response in the keyed direction.  These ICCs reveal differential 

item functioning, such that males are consistently more likely to endorse the keyed (I) response 

than females who share the same underlying E-I θ score. 

Figure 10.  Log-likelihood functions for three MBTI response profiles to the E-I scale; 

Ids 2093 and 224 are based on actual item ratings, whereas the third profile was simulated using 

random item responses.  The horizontal axis represents θ (the preference on the E-I dimension), 

with the vertical axis representing likelihood that the observed pattern of item endorsements 

would have been seen from a person holding the given θ score (higher values are more likely).   

 

 



IRT - 37 

 

 



IRT - 38 



IRT - 39 

 

 



IRT - 40 

 



IRT - 41 



IRT - 42 

 



IRT - 43 

 



IRT - 44 

 



IRT - 45 

 



IRT - 46 

 


