Instrumental Variables

(1) IV Estimation in a Simple Regression Model
(2) IV Estimation in a Multiple Regression Model

IV Estimation in a Simple Regression Model
x and $u \rightarrow$

- Endogeneity correlated
- One solution - https://youtu.be/eoJUPd6104Q x : endog.
- Model

$$
\begin{aligned}
y=\beta_{0}+\beta_{1} x+u \quad \Rightarrow & \text { obs is } \\
& \text { biased }
\end{aligned}
$$

- Suppose z is a variable such that
corr. w/ x
uncorr. w/ u
z : instrumental variable / instr - ament for
and only affects y
then we might still be able to estimate β,

IV Estimation in a Simple Regression Model (cont.)

IV Estimation in a Simple Regression Model (cont.)

Causal Inference: The Mixtape

IV Estimation in a Simple Regression Model (cont.)

- z and u are uncorrelated
- instrument exogeneity
- z has no direct effect on y (after controlling for x)
- z is uncorr. w/ omitted vars.
- often difficult to test

IV Estimation in a Simple Regression Model (cont.)

- z and x are correlated
- instrument relevance
- z is related to x
- can be tested by

$$
x=\pi_{0}+\pi, z+v
$$

IV Estimation in a Simple Regression Model (cont.)

"Movements in demand and supply can produce an arbitrary scatterplot ... which will trace out neither supply nor demand unless one of the curves is fixed."

Stock and Trebbi (2003)

IV Estimation in a Simple Regression Model (cont.)
(1) reg x on z

- Model
\rightarrow obtain \widehat{x}

$$
y=\beta_{0}+\beta_{1} x+u
$$

- x and u : correlated
(2) reg y on \widehat{x}
- z is an instrument for x
- The instrumental variables (IV) estimator of β_{1}

$$
\Rightarrow \widehat{\beta_{1}}
$$

e.g. $y:$ I wage
x : educ

$$
\left.\begin{array}{l}
\widehat{\beta}_{1}=\frac{\sum_{i}\left(z_{i}-\bar{z}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(z_{i}-\bar{z}\right)\left(x_{i}-\bar{x}\right)} \\
\text { when } z=x
\end{array}\right\} \text { obs } \begin{aligned}
& \text { formula }
\end{aligned}
$$

IV Estimation in a Simple Regression Model (cont.)

- If z and u are uncorrelated, and z and x are correlated, the IV estimator is consistent
- The IV estimator is never umbiased
- In small samples, the IV estimator can have substantial bias

IV Estimation in a Simple Regression Model (cont.)

- Statistical Inference
- Homoskedasticity assumption

$$
E\left(u^{2} \mid z\right)=\sigma^{2}=\operatorname{Var}(u)
$$

- Asymptotic standard error of $\hat{\beta}_{1}$

where $S S T_{x}$ is the total sum of squares of x $R_{x, z}^{2}$: R-squared from the regression of x on z $\hat{\sigma}^{2}=\frac{1}{n-2} \sum_{i} \hat{u}_{i}^{2}$
\widehat{u}_{i} : IV residuals

IV Estimation in a Simple Regression Model (cont.)

- Note
- Standard error of $\hat{\beta}_{1}$ in case of OLS

$$
\sqrt{\frac{\hat{\sigma}^{2}}{S s T_{x}}}
$$

where $S S T_{x}$ is the total sum of squares of x

$$
\hat{\sigma}^{2}=\frac{1}{n-2} \sum_{i} \widehat{u}_{i}^{2}
$$

\widehat{u}_{i} : OLS residuals

- Typically $R_{x, z}^{2}<1$ and the IV std. error always $>$
- If x and z are only slightly correlated old std. error

$$
\begin{aligned}
& \Rightarrow R_{x, z}^{2} \text { is small } \\
& \Rightarrow \text { IV std. error }
\end{aligned}
$$

IV Estimation in a Simple Regression Model (cont.)

- Note (cont.)
- If the correlation between x and z is low, we have the problem of
\star Inconsistency in the IV estimator related to $\frac{\operatorname{Corr}(z, u)}{\operatorname{Corr}(z, x)}$
\star This inconsistency (asymptotic bias) in the IV estimator can be large

IV Estimation in a Simple Regression Model (cont.)

@Kate__Barnes

IV Estimation in a Simple Regression Model (cont.)

- $n=10$, reps $=500, \operatorname{corr}(x, z=0.8), \operatorname{corr}(x, u=0.5), \operatorname{corr}(z, u=0)$
- $y=1+2 x+u$

IV Estimation in a Simple Regression Model (cont.)

- $n=1000$, reps $=500, \operatorname{corr}(x, z=0.8), \operatorname{corr}(x, u=0.5)$, $\operatorname{corr}(z, u=0)$
- $y=1+2 x+u$

IV Estimation in a Simple Regression Model (cont.)

- $n=1000$, reps $=500, \operatorname{corr}(x, z=0.01), \operatorname{corr}(x, u=0.5)$, $\operatorname{corr}(z, u=0)$
- $y=1+2 x+u$

IV Estimation in a Multiple Regression Model

$$
\begin{aligned}
& \longrightarrow \text { not in } \\
& \text { corr. w/ yo } \\
& \text { structural } \\
& \text { eq:. } \\
& \underset{y_{1}=\beta_{0}+\beta_{1} y_{2}+\beta_{2} z_{1}+u_{1}}{\downarrow} \text { corr.w/y2} \\
& \text { - Sometimes called strvetural eq… } \\
& \text { - } y_{1} \text { correlated with } u_{1} \Rightarrow \text { end on. } \\
& \text { - } z_{1} \text { assumed to be uncorrelated with } u_{1} \Rightarrow \text { ext } g \text {. } \\
& \text { - } y_{2} \text { correlated with } u_{1} \Rightarrow \text { en dog } \\
& \text { - OLS estimators: bi a based of inconsistent } \\
& z_{2} \text { instrumental variable for } y_{2} \longrightarrow \text { rainfall shocks } \\
& \text { conflict }=\beta_{0}+\beta_{1} \text { growth }+\beta_{2} \text { rugged } \\
& \text { terrain } \\
& +u_{1}
\end{aligned}
$$

IV Estimation in a Multiple Regression Model (cont.)

- Assumptions

$$
\begin{aligned}
E\left(u_{1}\right) & =0 \\
E\left(z_{1} u_{1}\right) & =0 \\
E\left(z_{2} u_{1}\right) & =0
\end{aligned}
$$

IV Estimation in a Multiple Regression Model (cont.)

- Equations

$$
\begin{aligned}
E\left(y_{1}-\beta_{0}-\beta_{1} y_{2}-\beta_{2} z_{1}\right) & =\mathbf{0} \\
E\left[z_{1}\left(y_{1}-\beta_{0}-\beta_{1} y_{2}-\beta_{2} z_{1}\right)\right] & =\mathbf{0} \\
E\left[z_{2}\left(y_{1}-\beta_{0}-\beta_{1} y_{2}-\beta_{2} z_{1}\right)\right] & =\mathbf{0}
\end{aligned}
$$

IV Estimation in a Multiple Regression Model (cont.)

- Sample analogs

$$
\begin{aligned}
n^{-1} \sum_{i=1}^{n}\left(y_{i 1}-\widehat{\beta}_{0}-\widehat{\beta}_{1} y_{i 2}-\widehat{\beta}_{2} z_{i 1}\right) & =0 \\
n^{-1} \sum_{i=1}^{n} z_{i 1}\left(y_{i 1}-\widehat{\beta}_{0}-\widehat{\beta}_{1} y_{i 2}-\widehat{\beta}_{2} z_{i 1}\right) & =\mathbf{0} \\
n^{-1} \sum_{i=1}^{n} z_{i 2}\left(y_{i 1}-\widehat{\beta}_{0}-\widehat{\beta}_{1} y_{i 2}-\widehat{\beta}_{2} z_{i 1}\right) & =\mathbf{O}
\end{aligned}
$$

- Instrumental variables estimators

IV Estimation in a Multiple Regression Model (cont.)

IV Estimation in a Multiple Regression Model (cont.)

- Note
- Structural equation

$$
y_{1}=\beta_{0}+\widehat{\beta_{1} y_{2}}+\beta_{2} z_{1}+u_{1}
$$

- Substituting

$$
y_{2}=\pi_{0}+\pi_{1} z_{1}+\pi_{2} z_{2}+v_{2}
$$

- Reduced form

$$
\begin{aligned}
& y_{1}=\beta_{0}+\beta_{1}\left(\pi_{0}+\pi_{1} z_{1}+\pi_{2} z_{2}+v_{2}\right)+\beta_{2} z_{1}+u_{1} \\
& \left.y_{1}=\left(\beta_{0}+\beta_{1} \pi_{0}\right)+\beta_{1} \pi_{1}+\beta_{2}\right) z_{1}-\beta_{1} \pi_{2} z_{2}+\left(u_{1}+\beta_{1} v_{2}\right)
\end{aligned}
$$

- Need IV to estimate

