More on Functional Form

(1) Quadratic functions
(2) Interaction terms

Quadratic functions

Quadratic functions (cont.)

- Increasing or decreasing effects

$$
\begin{aligned}
& y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+u \\
& \frac{\Delta y}{\Delta x}=\beta_{1}+2 \beta_{2} x
\end{aligned}
$$

Quadratic functions (cont.) $\frac{\Delta y}{\Delta x}=\beta_{1}+2 \beta_{2} x$

Quadratic functions (cont.)

Quadratic functions (cont.)

Quadratic functions (cont.) $=0.176$ (at $\exp :=.10)$

Interaction Terms

Interaction Terms (cont.)

Interaction Terms (cont.)

$$
\begin{gathered}
\log (\text { wage })=\beta_{0}+\beta_{1} e d v e+\beta_{2} I Q+\beta_{3} e d u c \times I Q . \\
+u
\end{gathered}
$$

$$
+u
$$

- Effect of one explanatory variable may depend on another
- Include interaction terms

$$
\begin{aligned}
& \Delta \log { }^{\text {wage }} \text {) } \\
& y=\beta_{0}+\beta_{1} \dot{x}_{1}+\beta_{2} \dot{x}_{2}+\beta_{3} \dot{x}_{1} \dot{x}_{2}+u \\
& =\beta_{1}+\beta_{3} \text { IQ } \frac{\frac{\Delta y}{\Delta x_{1}}=\beta_{1}+\beta_{3} x_{2}}{\frac{\Delta x}{\Delta x}=\beta_{2}} \\
& \frac{\Delta y}{\Delta x_{2}}=\beta_{2}+\beta_{3} x_{1} \\
& \text { - Example estimates } \\
& \hat{\beta}_{1}=0.025 \quad \mathrm{a} \mathrm{vg} \\
& \begin{array}{l}
V_{101.28}^{\frac{\Delta y}{\Delta x_{1}} \text { at } x_{2}=\bar{x}_{2}: \hat{\beta}_{1}+\widehat{\beta}_{3} \bar{x}_{2}} \\
\frac{\Delta y}{\Delta x_{2}} \text { at } x_{1}=\bar{x}_{1}: \widehat{\beta}
\end{array} \\
& \hat{\beta}_{2}=0.004=0.035 \\
& \widehat{\beta}_{2}+\widehat{\beta}_{3} \bar{x}_{1} \\
& \hat{\beta}_{3}=0.0001 \text { at } I a=101.28
\end{aligned}
$$

