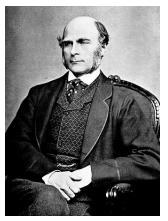
The Simple Regression Model: Definition, Estimation, and • Statistical Properties

- Definition
- Operiving the Ordinary Least Squares (OLS) Estimates
- Properties of OLS

Definition of the Simple Regression Model

Sir Francis Galton



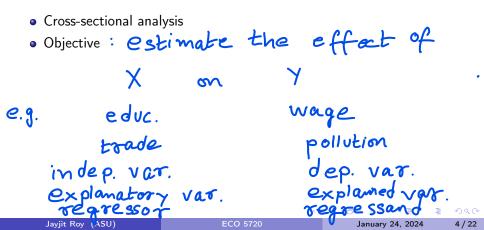
https://en.wikipedia.org/wiki/Francis_Galton Regression Towards Mediocrity in Hereditary Stature (1886)

Jayjit Roy (ASU)

ECO 5720

January 24, 2024

Definition of the Simple Regression Model (cont.)



Definition of the Simple Regression Model (cont.)

B: how y changes when
$$\mathcal{X}$$
 changes
keeping \mathcal{U} fixed
slope
• The simple linear regression model
 $y = \beta_0 + \beta_1 x + u$ unobserved or
intercept
 $\Delta y = \beta_1 \Delta x + \Delta u$
wage educ. ability

э

5/22

イロン イ理 とくほとう ほんし

Definition of the Simple Regression Model (cont.)

$$y = (\beta_0 + 150) + \beta_1 z + (U - 150)$$

e.g. if
$$E(u) = 150$$

• Objective: estimate β_0 and β_1

• Two assumptions

$$E(u) = 0$$

$$E(u|x) = E(u) \qquad No!$$
implying $E(u|x) = 0$ Is this likely
to be satisfied?

$$Corr. (2, u) = 0$$

$$E(2. u) = 0$$
what if yes!

$$E(2. u) = 0$$
educ. or trade
where readomly

$$E(2. u) = 0$$

Deriving the Ordinary Least Squares Estimates ۰. → E(u)=0 E(2u) = 0 Two equations $E\left(y-\beta_0-\beta_12\right)=0$ $E \approx (y - \beta_0 - \beta_2) = 0$ • Cross-sectional data $\{(x_i, y_i) : i = 1, 2, ..., n\}$ Sample analogs $\frac{1}{2}\sum_{i}\left(y_{i}-\beta_{i}-\beta_{i}z_{i}\right)=0$ • $\hat{\beta}_0$ and $\hat{\beta}_1$: $\frac{1}{n} \sum_{i} \varkappa_i (y_i - \beta_0 - \beta_i \varkappa_i)$ =0 estimates and B, 3 Jayjit Roy (ASU) January 24, 2024 7/22

Example

y (wage)	x (educ)
3.1	11
3.2	12
3	11
6	8
5.3	12
8.8	16
11	18
5	12
3.6	12
18	17

3

• = • • = •

< <p>Image: A (1) < </p>

$$6.742 - \hat{\beta}_0 - 12.9\hat{\beta}_1 = 0$$

$$97.234 - 12.9\hat{\beta}_0 - 175.1\hat{\beta}_1 = 0$$

$$\hat{eta}_{0} = -8.492 \ \hat{eta}_{1} = 1.181$$

 \overline{x} , \overline{y} , \overline{xy} , and $\overline{x^2}$: sample average of x, y, xy, and x^2

9/22

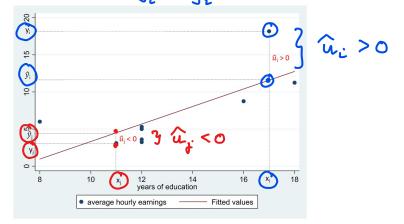
イロト 不得下 イヨト イヨト 二日

https://www.stata.com/giftshop/beta-hat/

Jayjit Roy (ASU)

January 24, 2024

- For the *i*th observation
 - Value of the dependent variable: y_i
 - Fitted value: $\hat{y}_i = \beta_i$ Residual: $\hat{u}_i = \beta_i$ + 3,22 t y



Javjit Roy (ASU)

January 24, 2024

11/22

< □ > < 同 > < 回 > < 回 > < 回 >

y (wage)	x (educ)	$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$	$\hat{u} = y - \hat{y}$
3.1	11	4.498	-1.398
3.2	12	5.679	-2.439
3	11	4.498	-1.498
6	8	0.955	5.045
5.3	12	5.679	-0.379
8.8	16	10.403	-1.653
11	18	12.765	-1.515
5	12	5.679	-0.679
3.6	12	5.679	-2.079
18	17	11.584	6.596

э

イロン イ理 とくほとう ほんし

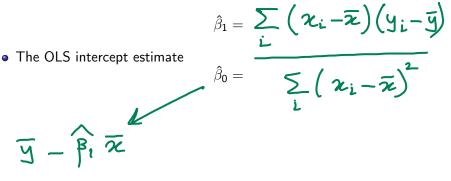
$$=\sum_{i}\left(y_{i}-\widehat{y}_{i}\right)^{2}$$

 $\sum_{i=1}^{n} \hat{u}_{i}^{2} = \sum_{i} \left(\mathbf{y}_{i} - \mathbf{\beta}_{0} - \mathbf{\beta}_{1} \mathbf{z}_{i} \right)^{2}$

• Sum of squared residuals

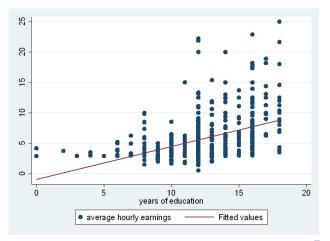
• \hat{eta}_0 and \hat{eta}_1 minimize the sum of squared residuals

• The ordinary least squares (OLS) slope estimate



Data: wage1

- wage: dollars per hour; educ: years of education; n = 526
- Estimated equation: $\widehat{wage} = -0.90 + 0.54 \ educ$



15 / 22

Properties of OLS

Sum (and thus average) of OLS residuals

$$\sum_{i=1}^n \hat{u}_i = \bigcirc$$

2 Sample correlation between x and \hat{u}

Correlation between the fitted values and residuals

$$\sum_{i=1}^{n} \hat{y}_i \hat{u}_i = \mathbf{O}$$

 $\sum_{i=1} x_i \hat{u}_i = \bigcirc$

(\bar{x}, \bar{y}) is on the OLS regression line $\bar{y} = \beta_0 + \beta_1 \bar{z}$

y

y (wage)	x (educ)	ŷ	û	хû	ŷû
3.1	11	4.498	-1.398	-15.381	-6.290
3.2	12	5.679	-2.439	-29.270	-13.852
3	11	4.498	-1.498	-16.481	-6.740
6	8	0.955	5.045	40.356	4.820
5.3	12	5.679	-0.379	-4.550	-2.153
8.8	16	10.403	-1.653	-26.446	-17.194
11	18	12.765	-1.515	-27.265	-19.335
5	12	5.679	-0.679	-8.150	-3.857
3.6	12	5.679	-2.079	-24.950	-11.808
18	17	11.584	6.596	112.136	76.409

イロン イ理 とく ヨン イヨン

2

$$\hat{u}_i = y_i - \hat{y}_i$$

Goodness-of-Fit

For each observation

$$y_i = \hat{y}_i + \hat{u}_i$$

• Total, explained, and residual - sum of squares $\begin{array}{c} \checkmark & \checkmark & \checkmark & \\ SST & SSE & SSR & \begin{array}{c} SST = \sum_{i} (9i - \overline{9})^{2} \\ SSE = \sum_{i} (9i - \overline{9})^{2} \\ SSR = \sum_{i} (9i - \overline{9})^{2} \\ \end{array}$

3 🕨 🤅 3

18 / 22

Can show

$$SST = SSE + SSR$$

• Fraction of the variation in y explained by x

• Equals the square of the correlation between y and \hat{y} = $\begin{bmatrix} SSR \\ SST \\$

 \circ $\leq R^2 \leq$

Image: Image:

poor fit of OLS line very little of variation in Y captured by " • $R^2 = 0$ • $R^2 = 1$ • High R^2 : not the ultimate objective in causal analysis I perfect fit of ols line all date pts. on some line

3

20 / 22

80.00 60.00 40.00 20.00 100.00 0.00 20.00 40.00 60.00 100*(expendA/(expendA+expendB)) 80.00 percent vote for A Fitted values

Data: vote1

Jayjit Roy (ASU)

3

(a)

y (wage)	x (educ)	ŷ	û	$(y-\overline{y})^2$	$(\hat{y} - \overline{y})^2$	\hat{u}^2
3.1	11	4.498	-1.398	13.264	5.034	1.955
3.2	12	5.679	-2.439	12.264	1.130	5.950
3	11	4.498	-1.498	14.003	5.034	2.245
6	8	0.955	5.045	0.551	33.484	25.447
5.3	12	5.679	-0.379	2.079	1.130	0.144
8.8	16	10.403	-1.653	4.032	13.402	2.732
11	18	12.765	-1.515	20.322	36.273	2.294
5	12	5.679	-0.679	3.035	1.130	0.461
3.6	12	5.679	-2.079	9.872	1.130	4.323
18	17	11.584	6.596	130.828	23.443	43.510

SST = 210.249 SSE = 121.188

SSR = 89.061 $R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST} = 0.576$

イロト 不得 トイヨト イヨト 二日