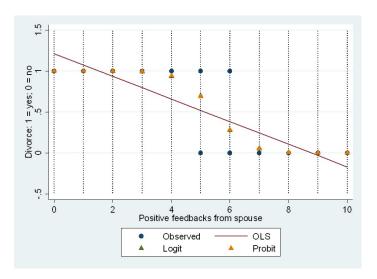
Binary Dependent Variables

- Examples
- 2 Latent variable framework
- Probit
- 4 Logit
- Maximum likelihood estimation
- Interpretation

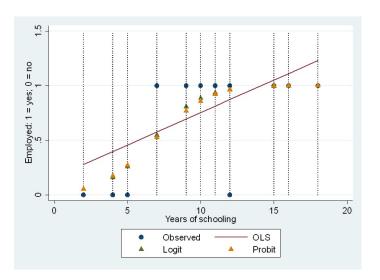
Jayjit Roy (ASU) ECO 5720 April 2, 2024 2 / 18

Examples



Jayjit Roy (ASU) ECO 5720 April 2, 2024 3 / 18

Examples (cont.)



Jayjit Roy (ASU) ECO 5720 April 2, 2024 4 / 18

Latent Variable Framework

• Latent (unobserved) variable

$$y^* = \beta_0 + \beta_1 x + u$$

Such that

$$y = 0 \text{ if } y^* < \bigcirc$$

= 1 if $y^* \ge \bigcirc$

Jayjit Roy (ASU) ECO 5720 April 2, 2024 5 / 18

Latent Variable Framework (cont.)

• Observe y = 1 if

$$\beta_0 + \beta_1 \times + U$$
 $y^* \ge 0$
 $u \ge -\beta_0 - \beta_1 \times 0$

Thus

$$P(y = 1|x) = P(u \ge 1) = P(u \ge 1)$$
etween 0 and 1
$$-\beta_1 z$$

• P(y = 1|x) bounded between 0 and 1

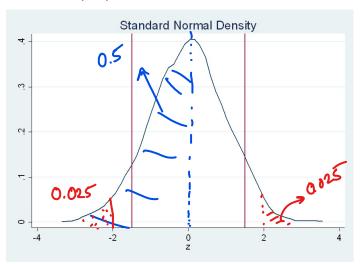
April 2, 2024

6/18

Javjit Roy (ASU) ECO 5720

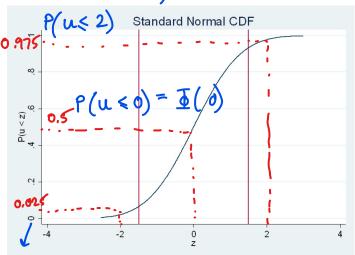
Probit

u follows N(0,1)



Jayjit Roy (ASU) ECO 5720 April 2, 2024 7/18

Probit (cont.) <u>4</u> (2)



$$P(u \leq -2) = \overline{b}(-2)$$

4 D > 4 B > 4 B > 3 P 9 Q P

8/18

Jayjit Roy (ASU) ECO 5720 April 2, 2024

Probit (cont.)

• Due to symmetry of N(0,1)

$$P(y = 1|x) = P(u \ge)$$

$$= P(u \le y)$$

$$= (\beta_0 + \beta_1 z)$$

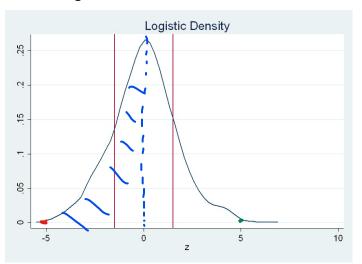
ullet \widehat{eta}_0 and \widehat{eta}_1 - from maximum likelihood estimation (MLE)

Jayjit Roy (ASU) ECO 5720 A

9 / 18

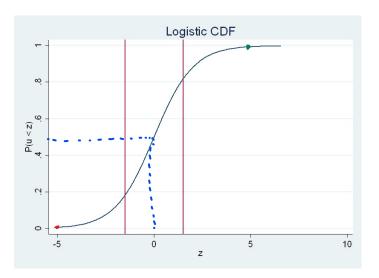
Logit

u follows logistic distribution



Jayjit Roy (ASU) ECO 5720 April 2, 2024 10 / 18

Logit (cont.)



Jayjit Roy (ASU) ECO 5720 April 2, 2024 11/18

Logit (cont.)

Due to symmetry of the logistic distribution

$$P(y = 1|x) = P(u \ge -\beta_0 - \beta_1 x)$$

$$= P(u \le \beta_0 + \beta_1 x)$$

$$= \exp\left(\beta_0 + \beta_1 x\right)$$

ullet \widehat{eta}_0 and \widehat{eta}_1 - from MLE

Jayjit Roy (ASU) ECO 5720 April 2, 2024 12 / 18

Maximum Likelihood Estimation

- Example
 - ▶ 20% of population below 15 years
 - ▶ Random sample of 3 people
 - ▶ Joint probability or likelihood (L) of 2 under 15 and 1 over 15

$$L=0.2\times0.2\times0.8$$

$$= 0.03$$

Jayjit Roy (ASU) ECO 5720 April 2, 2024 13 / 18

Maximum Likelihood Estimation (cont.)

MLE: finds an ectimate of pins.

that maximizes the litelihood of

observing the data that we actually observe.

- p_{insured}: probability of insured
- ▶ Random sample of 3 people: 2 insured and 1 uninsured
- Joint probability or likelihood (L) of observing this

$$L = p_{insured} \times p_{insured} \times (1 - p_{insured})$$

= $p_{insured}^2 - p_{insured}^3$

lacktriangle MLE finds $p_{insured}$ that maximizes L

Try diff. values or use calculus.

$$p_{ins} = 0 \rightarrow L = 0$$

$$= 0.5 \rightarrow L = 0.125$$

$$= 0.7 \rightarrow L = 0.147$$

value of pins. that max, L > pins. = 2/3 Makes sense!

Maximum Likelihood Estimation (cont.)

- In case of probit or logit with y=1 and y=0 for insured and uninsured
- $P(y = 1|x) = G(\beta_0 + \beta_1 x)$ and

titelihood
$$L = G(\beta_0 + \beta_1 x_1) \times G(\beta_0 + \beta_1 x_2) \times [1 - G(\beta_0 + \beta_1 x_3)]$$

• MLE finds $\widehat{\beta}_0$ and $\widehat{\beta}_1$ that maximizes L or $\log(L)$

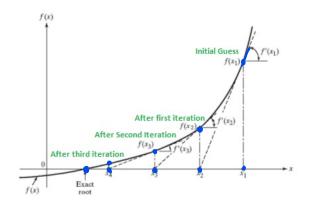
$$log(L) = log(...z_1) + log(...z_2)$$

$$likelihood + log(...z_3)$$

Javjit Roy (ASU) ECO 5720 April 2, 2024 15 / 18

Maximum Likelihood Estimation (cont.)

Nonlinear optimization



geeksforgeeks.org

◆ロト ◆個 ト ◆ 重 ト ◆ 重 ・ か Q ()

Interpretation

- Probit continuous x
- Logit continuous x

• The effects depend on x

$$\frac{\Delta P(y=1|x)}{\Delta x} = \begin{cases} \text{std. normal} \\ \text{density at } x \end{cases}$$

$$\frac{\Delta P(y=1|x)}{\Delta x} = \begin{cases} \text{locates} \end{cases}$$

$$\frac{\Delta x}{\Delta x} = \left(\begin{array}{c} \log_{1} sb_{1} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c} \log_{1} sb_{2} c \\ \log_{1} sb_{2} \end{array} \right) \times \left(\begin{array}{c}$$

17 / 18

Jayjit Roy (ASU) ECO 5720 April 2, 2024

Interpretation (cont.)

- Typically calculate
 - ▶ Effect at the average value of *x*
 - ▶ The average of the effects across all values of *x*

Jayjit Roy (ASU) ECO 5720 April 2, 2024 18 / 18