Binary Dependent Variables

(1) Examples
(2) Latent variable framework
(3) Probit
(9) Logit
(5) Maximum likelihood estimation
(6) Interpretation

Examples

Examples (cont.)

Latent Variable Framework

- Latent (unobserved) variable

$$
y^{*}=\beta_{0}+\beta_{1} x+u
$$

- Such that

$$
\begin{aligned}
& y=0 \text { if } y^{*}<0 \\
& =1 \text { if } y^{*} \geq 0
\end{aligned}
$$

Latent Variable Framework (cont.)

- Observe $y=1$ if

$$
\beta_{0}+\beta_{1} x+u
$$

$$
\begin{aligned}
& y^{*} \geq 0 \\
& \geq 0
\end{aligned}
$$

- Thus

$$
u \geq-\underbrace{-\beta_{0}-\beta_{1} x}
$$

$$
\begin{aligned}
P(y=1 \mid x)=P(u \geq 9
\end{aligned}=P\left(\begin{array}{rl}
u \geqslant & -\beta_{0} \\
\text { etween } 0 \text { and } 1 & \left.-\beta_{1} x\right)
\end{array}\right.
$$

Probit

u follows $N(0,1)$

Probit (cont.) $\underline{\Phi}(2)$

$$
P(u \leqslant-2)=\Phi(-2)
$$

Probit (cont.)

$$
-\beta_{0}-\beta_{1} x
$$

- Due to symmetry of $N(0,1)$

$$
\begin{gathered}
P(y=1 \mid x)=P(u \geq) \\
=P\left(u \leq \lambda \quad \beta_{0}+\beta, x\right. \\
=\underset{\Phi}{ }\left(\beta_{0}+\beta, x\right)
\end{gathered}
$$

- $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ - from maximum likelihood estimation (MLE)

Logit

u follows logistic distribution

Logit (cont.)

Logit (cont.)

- Due to symmetry of the logistic distribution

$$
\begin{aligned}
P(y=1 \mid x)= & P\left(u \geq-\beta_{0}-\beta_{1} x\right) \\
& =P\left(u \leq \beta_{0}+\beta_{1} x\right) \\
& =\frac{\exp \left(\beta_{0}+\beta_{1} x\right)}{1+\exp \left(\beta_{0}+\beta_{1} x\right)}
\end{aligned}
$$

- $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ - from MLE

Maximum Likelihood Estimation

- Example
- 20% of population - below 15 years
- Random sample of 3 people
- Joint probability or likelihood (L) of 2 under 15 and 1 over 15

$$
\begin{aligned}
L & =0.2 \times 0.2 \times 0.8 \\
& =0.03
\end{aligned}
$$

Maximum Likelihood Estimation (cont.)
MLE : finds an estimate of $P_{\text {ins. }}$ that maximizes the likelihood of observing the data that we

- Example
$\quad p_{\text {insured }}$: probability of insured actually absence.
- Random sample of 3 people: 2 insured and 1 uninsured
- Joint probability or likelihood (L) of observing this

$$
\begin{aligned}
L=p_{\text {insured }} & \times p_{\text {insured }} \times\left(1-p_{\text {insured }}\right) \\
& =p_{\text {insured }}^{2}-p_{\text {insured }}^{3}
\end{aligned}
$$

| M LE finds $p_{\text {insured }}$ that maximizes L |
| :--- | :--- |
| Try diff. values or |
| use calculus. |\(| \begin{aligned} p_{ins.}=0 \rightarrow L=0

=0.5 \rightarrow L=0.125

=0.7 \rightarrow L=0.147\end{aligned}\) use calculus.
valve of $p_{\text {ins. }}$ that max, $L \rightarrow P_{\text {ins. }}=2 / 3$ Mats Sense!

Maximum Likelihood Estimation (cont.)
$x_{i}: x$ for $o b s_{i}$

- In case of probit or logit with $y=1$ and $y=0$ for insured and uninsured
- $P(y=1 \mid x)=G\left(\beta_{0}+\beta_{1} x\right)$ and
likelihood

$$
L=G\left(\beta_{0}+\beta_{1} x_{1}\right) \times G\left(\beta_{0}+\beta_{1} x_{2}\right) \times\left[1-G\left(\beta_{0}+\beta_{1} x_{3}\right)\right]
$$

- MLE finds $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ that maximizes L or $\log (L)$

$$
\log (L)=\log \left(\ldots x_{1}\right)+\log \left(\ldots x_{2}\right)
$$

$\log _{\text {likelihood }}+\log \left(\ldots x_{3}\right)$

Maximum Likelihood Estimation (cont.)

Nonlinear optimization

geeksforgeeks.org

Interpretation

- Probit - continuous x
- Legit - continuous x

$$
\frac{\Delta P(y=1 \mid x)}{\Delta x}=\binom{\text { std. normal }}{\text { density at } x} \times \beta_{1}
$$

- The effects depend on x

$$
\frac{\Delta P(y=1 \mid x)}{\Delta x}=\text { (logistic }
$$ density at

$x) \times \beta_{1}$

Interpretation (cont.)

- Typically calculate
- Effect at the average value of x
- The average of the effects across all values of x

