ECO 4720 Practice SLR

1. Using data from 1988 for houses sold in Andover, Massachusetts, from Kiel and McClain (1995), the following equation relates housing price (*price*) to the distance from a recently built garbage incinerator (*dist*):

$$\log \widehat{(price)} = 9.40 + 0.312\log(dist)$$

(i) Interpret the coefficient on log(dist). Please explain the sign and magnitude in terms of price and dist.

Answer: If distance from an incinerator increases by 1%, housing prices increase by 0.31%.

(ii) What other factors about a house affect its price? Might these be correlated with distance from the incinerator?

Answer: Other factors include size of the house, number of bathrooms, size of the lot, age of the property, and quality of the neighborhood (including school quality). These could be correlated with distance since the city may choose to locate incinerators in areas with low quality houses.

- 2. The data set in CEOSAL2 contains information on chief executive officers for U.S. corporations. The variable *salary* is annual compensation, in thousands of dollars, and *ceoten* is prior number of years as company CEO.
- (i) Find the average salary.

Answer: The average salary is \$865,864.

. su

Variable	0bs	Mean	Std. dev.	Min	Max
salary	177	865.8644	587.5893	100	5299
age	177	56.42938	8.42189	33	86
college	177	.9717514	.1661523	0	1
grad	177	.5310734	.5004492	0	1
comten	177	22.50282	12.29473	2	58
ceoten	177	7.954802	7.150826	0	37
sales	177	3529.463	6088.654	29	51300
profits	177	207.8305	404.4543	-463	2700
mktval	177	3600.316	6442.276	387	45400
lsalary	177	6.582848	.6060594	4.60517	8.575274
lsales	177	7.231025	1.432086	3.367296	10.84545
lmktval	177	7.39941	1.133414	5.958425	10.72327
comtensq	177	656.6836	577.1227	4	3364
ceotensq	177	114.1243	212.566	0	1369
profmarg	177	6.42011	17.86074	-203.0769	47.45763

(ii) How many CEOs are in their first year as CEO (that is, ceoten = 0)?

Answer: Five.

(iii) Estimate the simple regression model

$$salary = \beta_0 + \beta_1 ceoten + u.$$

What is the increase in salary for one more year as a CEO?

Answer: The estimated equation is

$$salary = 772.426 + 11.746ceoten.$$

. reg salary ceoten

Source	SS	df	MS	Number of obs		177
				F(1, 175)	=	3.65
Model	1241694.06	1	1241694.06	Frob > F		0.0577
Residual	59524270.7	175	340138.69	R-squared	=	0.0204
				Adj R-squared	=	0.0148
Total	60765964.7	176	345261.163	Root MSE	=	583.21
	C((;-;+	Ctd		D. -		
salary	Coefficient	sta. err.	t	P> t [95% co	ont.	interval]
ceoten _cons	11.74613 772.4263	6.14774 65.67567		0.05838712 0.000 642.807		23.87939 902.0446

One more year as CEO is predicted to increase salary by \$11,746.

(iii) Estimate the simple regression model

$$\log(salary) = \beta_0 + \beta_1 ceoten + u.$$

What is the (approximate) percentage increase in salary given one more year as a CEO?

Answer: The estimated equation is

$$\log(\widehat{salary}) = 6.505 + 0.0097 ceoten.$$

. reg lsalary ceoten

Source	SS	df	MS		er of obs	=	177
Model	.850907024	1	.850907024	, ,	175) > F	=	2.33 0.1284
Residual	63.795306	175	.364544606	5 R-sq	uared	=	0.0132
T-4-1	64 6463131	176	267200020	•	R-squared	=	0.0075
Total	64.6462131	176	.367308029	9 Root	MSE	=	.60378
	<u></u>						
lsalary	Coefficient	Std. err.	t	P> t	[95% cor	nf.	interval]
ceoten	.0097236	.0063645	1.53	0.128	0028374	4	.0222846
_cons	6.505498	.0679911	95.68	0.000	6.37133	1	6.639686

One more year as CEO is predicted to increase salary by 100(0.0097)% or 0.97%.