ECO 2200 Quiz 1

1. The information below is on 5 individuals. The variable x denotes the number of donuts consumed per week; y represents weight in pounds. Find the correlation coefficient between x and y.

Obs. No.	x	y	$(x-\bar{x})$	$(y-\bar{y})$	$(x-\bar{x})^{2}$	$(y-\bar{y})^{2}$
1	5	75				
2	20	125				
3	10	160				
4	15	240				
5	0	200				$\sum_{i=1}^{5}\left(y_{i}-\bar{y}\right)^{2}$
Total:	$\sum_{i=1}^{5} x_{i}$	$\sum_{i=1}^{5} y_{i}$	$\sum_{i=1}^{5}\left(x_{i}-\bar{x}\right)$	$\sum_{i=1}^{5}\left(y_{i}-\bar{y}\right)$	$\sum_{i=1}^{5}\left(x_{i}-\bar{x}\right)^{2}$	

$\left(\frac{x-\bar{x}}{s_{x}}\right)$	$\left(\frac{y-\bar{y}}{s_{y}}\right)$	$\left(\frac{x-\bar{x}}{s_{x}}\right)\left(\frac{y-\bar{y}}{s_{y}}\right)$
$\sum_{i=1}^{5}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)$	$\sum_{i=1}^{5}\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)$	$\sum_{i=1}^{5}\left(\frac{x-\bar{x}}{s_{x}}\right)\left(\frac{y-\bar{y}}{s_{y}}\right)$

2. Suppose, in a future job, you are asked to calculate a correlation coefficient between a product's sales and advertising expenditure. If you find a correlation coefficient close to zero, would you recommend examining a scatter plot of the data?
3. Can you provide an example of 2 variables x and y where the variables are correlated but one does not cause the other?
